
Integration
Center for

Enablement (C4E)
A Complete Guide

Antti Toivanen
Head of Product & VP

Frends iPaaS

Integration is undergoing a necessary transformation. For too long, centralized
control models have tried to keep up with increasingly decentralized development
environments and failed. Today, what organizations need is not necessarily tighter
control, but smarter enablement.

That’s where the Integration Center for Enablement (C4E) comes in.

The C4E model acknowledges what we’ve seen across countless organizations:
delivery speed, scale, and developer autonomy are essential. But so are
governance, security, and reuse. Balancing these is not just a technical challenge
— it’s an organizational one.

This playbook exists to support that shift. It’s built on decades of experience
navigating complex integration landscapes, across technologies and industries.
And while some of the ideas here reflect lessons learned at Frends, the real goal is
to help teams modernize their integration capability regardless of platform.

The industry doesn’t need more vendor promises. It needs frameworks that work. If
this helps move the conversation forward, then it’s done its job.

Table of Contents

1 Introduction
Integration Center for Enablement

2

2 Enablement over control
Shifting from ICC to C4E

3

3 The Integration C4E Team
Platform stewardship and Enablement

6

3.1 Integration Maturity

Benchmark

8

3.2 Integration C4E team’s

responsibilities

11

4 Platform and product

thinking for integration

13

5 Governance & Standards
in a Federated Environment

16

6 Integration Delivery

Operating Models

21

6.1 Centralized Integration

Delivery (Legacy Model)

23

Table of Contents

6.2 Federated Delivery
with Platform Guardrails

25

6.3 Self-Service and API-first

Teams enabled by C4E

28

6.4
DevOps-Integrated

Integration
(CI/CD and Automation)

31

6.5 Microservices
use with care

34

6.6
Policy-Enforced

Integration via iPaaS
 (Microservices through iPaaS)

37

6.7 Agentic AI–Driven Integration:
Prompting and reusable API tooling

42

7 Consistency across multiple

integration platforms

45

8 Conclusion:
Building a modern integration capability

49

2

01
Introduction

Integration
Center for
Enablement

Enterprise integration has evolved. In the
past, integration work was usually managed
by a single central team (ICC). That approach
made sense at the time, but it struggled to
keep up with today’s faster, more
decentralized development environments.

In today’s world of distributed microservices,
multi-cloud applications and fast-paced
digital initiatives, the ICC´s strict approach
can become a bottleneck.

Rigid centralized control often slows down
projects and drives teams to seek
workarounds, undermining the governance it
intended to enforce.

1

2

�� Introduction – Integration Center for Enablement

Enter the Integration

Center for Enablement (C4E) 
A modern take that flips the script
from control to enablement.

A C4E is a cross-functional team tasked with productizing, publishing, and
harvesting reusable integration assets and best practices. Instead of one team
executing all integration work, the C4E’s mission is to empower distributed teams
across the enterprise to build integrations quickly and safely.

This model accepts that not every integration has to go through one central
platform. Instead, it’s about giving teams the tools and guidance they need to do
things right on their own.

For example, under a traditional ICC, if the Marketing department needed to
connect a new CRM system, they would submit a request and wait in the queue for
the central team to deliver it. In a C4E model, the Marketing team (or their IT
partners) can build the integration themselves using approved tools and
standards, with the C4E providing the necessary platform, training, and guidelines
upfront.

The result is faster delivery to the business and a smoother path to innovation. In
fact, organizations that embrace this enablement-focused approach have
reported up to 60% shorter delivery cycles and higher team productivity than those
sticking to centralized methods.

This playbook outlines transitioning from ICC to the modern C4E, reframing
integration practices for micro/miniservices, multi-platform and the DevOps era.

We will cover the mindset shift from control to enablement, the importance of
treating integrations and APIs as internal products, various operating models (from
centralized to self-service), governance in a federated environment, and strategies
to avoid pitfalls like microservice sprawl. This is a practical guide created for
business and IT leaders to build an integration capability that is agile yet
governed, enabling speed and maintaining compliance.

2

02
Enablement over control

Shifting from

ICC to C4E

In the ICC model, the integration team
functioned as a Center of Excellence (CoE), a
centralized powerhouse of integration
experts who executed or approved every
integration project. While this ensured a
degree of consistency, it also meant that
knowledge and execution were
“bottlenecked” in one team.

The CoE often unintentionally hoarded
expertise, with integration knowledge
protected and rationed in the central group.

The side effect? Developers and business
units sometimes worked around the ICC to
get things done, leading to “shadow IT”
integrations that bypass governance entirely.

3

2. Enablement over control – Shifting from ICC to C4E

4

The C4E flips this approach. Instead
of a command-and-control tower,
think of C4E as an enablement hub.
The C4E’s primary goals are to run the integration/API platform and enable other
teams to use it effectively, rather than doing all the integration development itself.
This means the C4E focuses on sharing knowledge, reusable assets and best
practices across the organization.

It actively promotes the consumption of those assets and supports teams to be
self-reliant in building integrations. Integration experts won’t disappear, but their
role evolves from implementers to coaches and facilitators.

Traditional CoEs could become overwhelmed with demands, causing delays. A
well-run C4E, by contrast, distributes the work: many teams can execute
integrations in parallel, using common standards and avoiding bottlenecks. This
federated delivery means higher throughput and agility, while the C4E ensures
outcomes remain aligned to enterprise standards. The culture shifts to one of
collaboration: architects and developers in different business units work closely
with the C4E, not for the C4E. The C4E provides enablement services like training,
templates, and advisory, but it does not need to sign off on every minor change –
it trusts teams within a framework of clear rules.

Example:

Under an enablement model, a new e-commerce API might be built by
the Retail IT team itself, using the tools, templates, and security
standards provided by C4E. The C4E might only get involved to consult
on design or to ensure compliance through automated checks. This is a
stark contrast to the old ICC approach, where that API would sit in a
central backlog waiting for a specialist to implement. The C4E model
thereby avoids making a “bottleneck” team that others try to work
around – instead, it makes the integration practice scalable by having
many capable hands, all following a common playbook.

2. Enablement over control – Shifting from ICC to C4E

5

The shift from ICC to C4E also
entails a change in success metrics.
In an ICC, success might be measured by projects delivered by the central team. In
a C4E, success is measured by broader outcomes: How many integrations are
being reused? How much faster can projects go live thanks to the platform? How
many teams are actively contributing to integrations? These are signs of
enablement. Ultimately, a C4E aims to create a production-and-consumption
model, where teams produce integration assets (APIs, services) and consume
those produced by others, rather than everything being made centrally. This
networked model of delivery accelerates digital initiatives while preserving order.

2

03
The Integration C4E Team

Platform
stewardship

and Enablement

The C4E is not just a concept, but an actual
team (or virtual team) within the organization.

It is typically cross-functional, drawing
members from central IT, business units, and
enterprise architecture groups. This blend
ensures the C4E has a broad perspective and
credibility across silos. Think of the C4E team
as both platform stewards and integration
coaches – they own the integration platforms
and standards and enable other teams to
use them effectively.

6

7

3. The Integration C4E Team – Platform stewardship and Enablement

The dual nature of the C4E’s work
can be thought of in two broad
categories: Platform and
Enablement
On the platform side, the C4E manages the integration infrastructure as an
internal product, including architecture, tools, and operational aspects. On the
enablement side, the C4E drives the adoption of integration best practices,
reusable components, and supports project teams. The diagram below illustrates
these facets and the key responsibilities of a C4E team.

The C4E team’s responsibilities span two domains: maintaining the integration
Platform (left) and providing Enablement to teams (right).

In platform stewardship, C4E defines architecture, security and automation
standards, and manages the integration environment (deployment models,
monitoring, support, etc.).

In enablement, C4E sets up API strategy and governance, curates best practices
and reusable assets, accelerates delivery through training and onboarding, and
generally acts as the integration “coach” for the organization. This structure
positions the C4E as both the guardian of the platform and the guide for teams.

C4E

� Deployment model�

� Reference architectur�

� Security architectur�

� Automation and tooling

Platform Architecture

� Platform build & configuratio�

� Monitoring and ops managemen�

� Capacity and performance plannin�

� Upgrades and patching

Deployment & Management

� App support guidanc�

� Platform suppor�

� MuleSoft support escalation�

� Product enhancement process

Support

Platform

� Vision & objective�

� IT strategy alignmen�

� KPIs and value reportin�

� Program Governance

API Strategy

� API service governanc�

� Self service enablement asset�

� Training and certificatio�

� Evangelism – comms & events

API Best Practice

� Reusable central assets and cod�

� SME consultanc�

� On-boarding proces�

� Facilitate and enable consumer delivery

Delivery Acceleration

Enablement

3.1 Integration Maturity Benchmark

The following maturity model provides a structured way to benchmark where your organization sits
on its journey from ad-hoc, project-by-project integration toward a fully productized, self-service
ecosystem, underpinned by an Integration Center for Enablement (C4E).

Each level represents a step-change in both the platform stewardship and enablement
responsibilities of the C4E:

Level 2: Defined

Characteristics: A basic integration
platform exists (e.g., catalogue, security
policies), and a minimal set of guidelines
has been documented. Some reusable
templates or connectors are available,

but adoption is spotty.

C4E Role: Publish “starter
kits,” run workshops on
standards, begin curating

an initial API catalogue.

Level 1: Ad-Hoc

Characteristics: Teams build integrations
one-off, using bespoke scripts or point-to-
point code. There is no shared platform, few
standards and no central visibility or reuse.

C4E Role: Reactive
firefighting — answering
tickets, sharing sample

code by request.

Level 3: Enabled

Characteristics: Self-service is real.
Development teams can consume platform
APIs and templates with little handholding.
Automated CI/CD pipelines enforce quality
gates. Usage metrics begin to appear in
dashboards.

C4E Role: Maintain templates
and governance-as-code,
onboard new teams via
training programs, monitor
adoption and surface
blockers.

Level 4: Managed

Characteristics: Governance is largely
automated. The C4E tracks SLAs, error
rates, throughput and publishes regular
consumption reports. A formal roadmap

for new capabilities (e.g., event streaming,
low-code connectors) guides evolution.

C4E Role: Operate real-time
monitoring and alerting, drive
continuous improvement
cycles, coordinate cross-
team “guardrail reviews.”

8

3.1 Integration Maturity Benchmark

Level 5: Optimized

Characteristics: Integration is treated as

a first-class product. The C4E, in
partnership with product managers,

uses usage analytics (and even ML-driven
recommendations) to proactively evolve
the platform. Teams increasingly innovate
at the edges, confident in the underlying
capabilities.

C4E Role: Act as strategic
adviser, spotting new use-
cases, piloting advanced
patterns (e.g., API-mesh,
event-driven fabrics) and
evangelizing best practices
enterprise-wide.

1

Ad-Hoc
Characteristics: Teams build
integrations one-off, using
bespoke scripts or point-to-
point code. There is no
shared platform, few
standards and no central
visibility or reuse.egrations?

C4E Role: Reactive
firefighting—answering
tickets, sharing sample
code by request.

2

Defined
Characteristics: A basic
integration platform exists
(e.g., catalogue, security
policies), and a minimal set
of guidelines has been
documented. Some
reusable templates or
connectors are available,
but adoption is spotty.

C4E Role: Publish “starter
kits,” run workshops on
standards, begin curating
an initial API catalogue.

3

Enabled
Characteristics: Self-service
is real. Development teams
can consume platform APIs
and templates with little
handholding. Automated
CI/CD pipelines enforce
quality gates. Usage
metrics begin to appear

in dashboards.

C4E Role: Maintain
templates and governance
-as-code, onboard new
teams via training
programs, monitor adoption
and surface blockers.

4

Managed
Characteristics:
Governance is largely
automated. The C4E tracks
SLAs, error rates, throughput
and publishes regular
consumption reports. A
formal roadmap for new
capabilities (e.g., event
streaming, low-code
connectors) guides
evolution.

C4E Role: Operate real-
time monitoring and
alerting, drive continuous
improvement cycles,
coordinate cross-team
“guardrail reviews.”

5

Optimized
Characteristics: Integration
is treated as a first-class
product. The C4E, in
partnership with product
managers, uses usage
analytics (and even ML-
driven recommendations) to
proactively evolve the
platform. Teams
increasingly innovate at

the edges, confident in the
underlying capabilities.

C4E Role: Act as strategic
adviser, spotting new use-
cases, piloting advanced
patterns (e.g., API-mesh,
event-driven fabrics) and
evangelizing best practices
enterprise-wide.

TCO/Business Risk

B
us

in
es

s
Va

lu
e

3.1 Integration Maturity Benchmark

9

Using the model as a diagnostic

and roadmap

1

Assess current state

Run a short survey or workshop with your integration teams to map
where they land on each of the five dimensions (platform, governance,
enablement, automation, metrics).

2

Identify gaps

Highlight the biggest delta between today’s level and the next—e.g.,
lack of automated compliance (Level 3→4) or missing self-service
templates (Level 2→3).

3

Prioritize C4E initiatives

Focus your roadmap on the capabilities that will unlock the greatest
productivity gains — whether that’s plugging governance into your CI/
CD pipeline, expanding connector libraries, or building a consumption
dashboard.

4

Measure progress

Re-run the assessment quarterly to track shifts in adoption, reuse
rates, cycle times and defect rates. Adjust your C4E’s charter and
resource allocation accordingly.

5

�� Build impact

By using this maturity model as both a mirror and a guide, the
Integration C4E can systematically grow its impact, shifting from
reactive support toward proactive platform governance and
business-driven innovation.

10

3.1 Integration Maturity Benchmark

11

3.2 Integration C4E team’s
responsibilities

Concretely, the C4E team’s

responsibilities include:

Integration strategy and roadmap:

Define the vision for integration in line with business goals. For example, decide on
an API-first approach for all new projects or target certain legacy systems for
modernization.

Platform architecture & operations:

Build and manage the integration platform(s). This involves defining reference
architectures, ensuring security is baked in, setting up CI/CD pipelines for
integrations, and handling capacity planning and upgrades. The C4E provides a
stable, scalable foundation (whether it’s an iPaaS, API gateway, message broker,
etc.) on which others can build.

Standards and governance:

Establish enterprise-wide standards for integration design and development,
covering areas like API design guidelines, data formats, error handling, logging and
security policies. The C4E documents these standards and ensures they are
accessible. This role is inherited from the ICC concept of enforcing consistency (e.g.
naming conventions, metadata standards, version control), but the C4E enforces
them through enablement and tooling rather than dictatorial control.

Reusable assets and tooling:

Develop and curate reusable integration assets – for instance, common API
frameworks or templates, connectors/adapters for common systems, shared data
models, and “accelerators” (like code snippets or low-code templates). By
harvesting and publishing these assets, the C4E productizes integration know-how
for easy consumption by teams. Teams can start projects faster by leveraging
these building blocks.

12

3.2 Integration C4E team’s
responsibilities

Training and support:

Provide training programs, hands-on workshops and documentation to upskill
teams on integration tools and best practices. The C4E often runs an internal
“integration academy” or community of practice. It may also offer consultation or
architects-on-demand for projects, acting as experts who can be pulled in to help
solve tricky integration problems. By fostering a knowledge-sharing culture, the
C4E boosts overall integration competency across all teams.

Delivery enablement and oversight:

Accelerate projects by onboarding teams to the platform quickly, assisting with
initial architecture or design reviews and then stepping back to let them work. The
C4E might require a review for only the most critical aspects (e.g. security design or
going live to production) as a safeguard. It balances empowering teams with
ensuring no major compliance gaps. Essentially, the C4E provides guardrails – if
teams stay within them, they can move fast. If they hit an issue, the C4E is there as
a safety net.

Metric tracking and continuous improvement:

Monitor key metrics such as the number of integrations delivered by teams, API
reuse rate, time-to-market improvements, platform usage, support tickets, etc. This
data helps demonstrate the C4E’s value (e.g., “we delivered 50% more integrations
this quarter with the same resources”) and identifies areas for improvement. For
example, if certain teams are not adopting the platform, the C4E can reach out to
understand why (maybe they need additional support or are missing a capability).

The C4E team is the chief enabler and custodian of integration practices. They do
not necessarily own all integration development, but the ecosystem in which it
happens. The integration C4E team is 50% platform team, 50% enablement team,
depending on the approach to your choice of platform. While ensuring that the
platform is in pristine condition and used as intended, the effort put into it varies
depending on approach: fully on-premises own integration platform, hybrid iPaaS
or full-cloud native iPaaS without hybrid. On the other side, they support scale and
governance by equipping other delivery teams with standards, tools, and reusable
components. This way, the enterprise benefits from both centralized expertise and
decentralized execution.

3.2 Integration C4E team’s responsibilities

2

04
Platform and
product thinking
for integration

At the heart of the C4E model is a mindset
shift: APIs and integrations should be treated
like real products — not just one-off fixes,
side projects, or technical afterthoughts.

This means shifting to a platform/product
mindset in which integration capabilities are
managed through their full lifecycle, and
where other teams (the “customers”) are
encouraged to use and reuse

these capabilities.

13

13

4. Platform and product thinking for integration

What does it mean to consider an
API or integration as a product?

It means:

1. It has a clear lifecycle

from idea to design, development, deployment, version updates and eventually
retirement. The C4E ensures there are processes for each stage (e.g. design
reviews, publishing version 2.0 of an API, deprecating an old service gracefully,
etc.).

2. It has an owner or team

responsible for its maintenance and evolution (often the producing team, with the
C4E setting up ownership guidelines).

3. It is designed with the consumer in mind:

just as an external product API would be designed for ease-of-use, performance
and reliability, internal APIs should be treated equally. This includes providing good
documentation, self-service access (through an API portal or repository), and
collecting feedback from consumers.

4. It is measured by its adoption and value

For instance, reusing an internal order management API across five projects is a
success metric. The C4E helps publish such metrics to highlight the benefits of
reuse.

Practically, adopting product thinking leads to establishing an internal API (or
integration) marketplace. Many organizations create an API catalog or developer
portal accessible to all developers in the company. Through this portal, teams can
discover existing APIs/integrations, request access, read documentation, and even
publish their own for others to use. The C4E often curates this marketplace. By
publishing and “marketing” reusable assets, it drives greater consumption and
collaboration.

4. Platform and product thinking for integration

14

The C4E facilitates this scenario by
ensuring such APIs exist and meet
quality standards, while encouraging
teams to harvest their integration
work to be reused by others.
Adopting platform thinking also means the integration platform itself is a
product. The iPaaS or integration tools provided by the C4E are treated as an
internal product/service that needs continuous improvement and support. The
C4E might operate an “integration platform as a service” within the company –
where they onboard new teams, gather requirements for new features (e.g. need a
new connector or a better monitoring dashboard), and iterate on the platform’s
capabilities just like an external vendor would.

In some organizations, the C4E even has a product manager role for the internal
integration platform.

The benefits of this product mindset are significant. It leads to higher reuse of
integration assets and fewer redundant efforts, because teams are aware of and
leverage what already exists. It also improves quality, since products are
maintained and refined over time (instead of “fire-and-forget” scripts that
accumulate technical debt).

And it dramatically speeds up delivery: one study by Mulesoft found that a C4E
approach enabled projects to deliver integrations 3x faster and with 300% more
productivity by reusing assets rather than rebuilding everything. When every
integration is built as a potential reusable product, the whole organization’s
integration capability is composed of building blocks, enabling rapid assembly of
new solutions.

300%
Productivity

by reusing assets, rather

than rebuilding everything

4. Platform and product thinking for integration

15

We recommend establishing

clear API/integration lifecycle
management practices to
implement this.

For instance, use source control and CI/CD for integration code (more on that can
be found under the section “DevOps-Integrated Integration (CI/CD and
Automation)”), have a versioning scheme for APIs (with deprecation policies so
consumers have time to migrate), and maintain documentation as a first-class
deliverable.

The C4E can provide templates for API documentation, service level agreements
(SLAs) for internal services and even an internal “developer portal” where these
products are showcased.

By treating integration assets as products, the enterprise creates an internal
ecosystem of services that teams can rely on, accelerating innovation and
reducing duplication of effort.

Example:

Imagine a team that needs to integrate with the customer's master data.
Under a productized approach, they might find that there’s already a
“Customer API” available in the internal catalog. Instead of building a
new integration from scratch, they can utilize the already existing API,
saving resources and ensuring consistency in accessing customer data
enterprise-wide access. The team that owns the Customer API treats it
as a product: they have versioned it, documented usage guidelines, and
maybe even published a roadmap (e.g. “API will support new fields next
quarter”).

2

05
Governance and Standards

in a Federated
Environment

Moving to a federated integration model,
with several teams building integrations, does
not mean abandoning governance. In fact,
governance becomes even more critical – it’s
the glue that holds the distributed model
together.

The C4E must establish a clear governance
framework that all teams follow, ensuring that
whether an API is built by Team A or an
integration workflow by Team B, they all
comply with the agreed-upon standards for
quality, security, and interoperability.

16

Key governance elements

to institute:

17

5. Governance and Standards in a Federated Environment

Security Policies

All integrations and APIs must adhere to enterprise security requirements. For
example, APIs should implement standard authentication and authorization
(OAuth 2.0, JWT, etc.), use encryption for data in transit and at rest as appropriate,
and not expose sensitive data without proper controls. The C4E works with the
security team to define these policies and possibly bake them into the platform
(e.g., providing a centralized API gateway or service mesh enforcing
authentication).

API Design and Naming Guidelines

The organization should have a consistent style for APIs (naming conventions for
endpoints, consistent error response formats, use of HTTP verbs, etc.) and for other
integration artifacts (e.g. consistent naming of integration jobs, mappings or
queues). Consistent design makes it easier for developers to use any API because
they look familiar. A design review checklist or an automated linting tool can help
enforce this.

Data and Metadata Standards

If the enterprise has canonical data models or standard schemas (for example, a
common format for customer data or product data), the C4E should enforce their
usage in integrations. This avoids the situation where each team defines its own
data format, causing translation overhead. Metadata management (like clear
documentation of what data is exchanged, field definitions, etc.) is also important,
so integrations are not black boxes.

Lifecycle Management

Standards for versioning of APIs/integrations (e.g. semantic versioning),
deprecation policy (how long will an old version be supported after a new one is
out), and documentation of changes. Every integration should be traceable
through its lifecycle – from development to testing to production, with change
management in place. This also includes DevOps processes – e.g., any production
deployment of an integration must go through the CI/CD pipeline and meet
quality gates.

Key governance elements

to institute:

18

5. Governance and Standards in a Federated Environment

Documentation and Discoverability

Every integration (API, workflow, etc.) must be properly documented – ideally in a
centralized portal or repository. Documentation should include purpose, owners,
usage instructions, dependencies, and compliance considerations. The C4E might
enforce, for instance, that an API will not be published for others to use until an API
specification (like an OpenAPI document) is provided and reviewed.

Quality and Testing

Define testing protocols for integrations – e.g., unit tests for integration flows,
contract testing for APIs, performance testing for critical services. Also, set SLAs/
SLOs for integrations if needed (e.g. an API should respond within 200ms for 95% of
calls, or a nightly batch completes by 6 AM daily). Monitoring standards (every
service should log to the central logging solution and expose metrics) also fall here.

Compliance and Regulatory

For industries with compliance needs (GDPR, HIPAA, etc.), European companies
that require their data to be stored within the EU, businesses with other regulatory
needs or even those cautious about political instability, the C4E must ensure
integrations comply with data handling rules. This might involve classifying data in
integrations and applying rules (for example, PII data must be masked in logs).
Governance includes ensuring those rules are uniformly applied regardless of who
builds the integration.

5. Governance and Standards in a Federated Environment

19

The C4E should document these
standards in an Integration
Guidelines handbook
an internal guide to ensure that every department and third-party follow the same
rules and restrictions. However, more than documentation, C4E should strive for
automated governance where possible. Automated processes and tools can
enforce many standards so that teams get immediate feedback if they violate a
rule.

For instance, a CI/CD pipeline can include a static code analysis or linting step to
check an API specification against the style guide. An integration platform might
have built-in policy enforcement – e.g., the platform could automatically reject
any service that doesn’t include specific security headers or schema validations.

This kind of “governance as code” is key to scaling federated delivery. It moves
governance from after-the-fact manual reviews to proactive, built-in checks. As
the Wikipedia entry on ICC notes, the highest maturity (“self-service ICC”) achieves
independent innovation by “strict enforcement of a set of integration standards
through automated processes enabled by tools and systems.” – that is precisely
what a C4E aims to do.

Another governance mechanism is establishing an Architecture or Governance
Board that includes C4E members and representatives from development teams.
This board can periodically review new integration proposals for alignment with
standards, especially for major initiatives, and handle exceptions. The emphasis,
however, is on lightweight governance – we don’t want to recreate a heavy
change of control bureaucracy, but rather an enablement forum that ensures
critical issues are caught early.

5. Governance and Standards in a Federated Environment

20

Compliance is non-negotiable:

Even in a multi-platform, multi-team
world, certain things must be true

for all integrations.
For example, if the policy is “all personal data transfers must be logged and
auditable,” then every integration (no matter the technology) must build that in.
The C4E’s role is to communicate these rules clearly, provide tools to achieve them,
and monitor compliance. Regular audits or reports can be used – e.g., the C4E
might run a scan to verify every API is registered in the portal and uses approved
authentication.

It’s worth noting that strong governance actually enables more decentralization.
When teams know the guardrails and those guardrails are firm, they have the
confidence to build things themselves. Conversely, if governance is unclear or
inconsistent, organizations may revert to centralizing out of fear. The playbook,
therefore, stresses investing in governance early in the C4E journey. As one 2024
integration blog put it, C4E creates “standardized practices, guidelines, and
templates for API design, development, and governance, ensuring project
consistency and reducing errors or inconsistencies”. By doing so, even a variety of
teams and technologies can produce integrations that look and behave like they
came from one unified program, which, in effect, they did, guided by the C4E.

2

06
Integration Delivery

Operating Models

Every organization’s integration journey is
different. Some may start with a fully
centralized model and gradually move
toward federated or self-service delivery.

Others might already be decentralized and
need to introduce more governance. It’s
useful to understand several operating
models for integration delivery, from the old-
school centralized approach to the modern
autonomous approach.

21

6. Integration Delivery Operating Models

22

Below is a visualization that maps different models against two key dimensions:
the degree of development centralization vs. distribution, and the degree of
compliance control (strict vs. loose).

Align your team topology with your
business goals.
Alignment of integration operating models with business goals of scale and
compliance. A traditional CoE (Center of Excellence) or ICC emphasizes ensured
compliance through centralized development (upper-left), but can struggle to
scale delivery.

C4E (Center for Enablement) strives to maintain high compliance and scaled,
distributed development (upper-right) by enabling teams within guardrails. Fully
Centralized Development (bottom-left) has neither the agility nor necessarily the
enforcement if standards are not mature – it represents an outdated model where
one IT team does everything but without formalized best practices.

At the opposite extreme, “Away Teams” or ad-hoc decentralized development
(bottom-right) maximize speed by allowing teams to work independently with
looser compliance, often leading to integration sprawl and inconsistency. The C4E
model aims to be the optimal quadrant, balancing speed and innovation with
governance and consistency.

Most organizations will recognize elements of these models in their environment.
Below, we detail four primary operating models and how the C4E playbook
addresses each.

C4E - Center for

Enablement

Away Teams
Fully Centralized

Development

Ensured Compliance

C
en

tr
a

liz
ed

 D
ev

el
op

m
en

t

Sc
a

le
d

 D
is

tr
ib

ut
ed

D

ev
el

op
m

en
t

Looser Compliance

COE - Center of

Excellence

23

6.1 Centralized Integration

Delivery (Legacy Model)

In a fully centralized model, a single
team (the old ICC or integration CoE)
is responsible for designing, building,
and operating all integrations and
APIs in the enterprise.
Business units request integrations from this central team, which prioritizes and
delivers them. This model was common in the past, especially when integration
technology was complex (e.g., on-premise ESBs) and scarce expert skills had to be
concentrated.

Advantages

Centralized delivery offers strong control and oversight. Standards can be
enforced by direct supervision, since the same team is doing all the work.
Duplicated efforts are minimal because everything funnels through one group. It
can be efficient for a small number of projects and ensure a high level of
compliance by default (nothing goes live without central approval).

Drawbacks

This approach does not scale well in large enterprises. The central team often
becomes a bottleneck, unable to keep up with the integration demand from
various projects. The more the business relies on digital processes, the more
integration work piles up, and a finite central team can’t deliver fast enough. This
leads to long queues, frustrated business units and sometimes projects going
ahead without proper integration (or doing quick-and-dirty workarounds).
Additionally, centralized teams might lack the full context of each business
domain, resulting in solutions that are technically sound but not optimally aligned
with business needs.

6.1 Centralized Integration Delivery (Legacy Model)

24

Role of C4E:
If an organization is currently here, the C4E’s job
is to gradually break the logjam by introducing
enablement.

The C4E might start as essentially the existing
central team but will focus on creating
playbooks, templates and governance that
allow involvement from other teams.

Over time, responsibilities can be federated.
The C4E can still manage critical integrations
centrally (especially in highly regulated
environments or where specialist skills are non-
negotiable), but it should actively push to
empower other teams for less critical work.

Stepping stone to
the modern view
A fully centralized, monolithic integration team
is generally seen as counterproductive to speed
and agility in the digital age. Unless your
enterprise integration needs are very small, this
model will likely hinder digital transformation.

The recommendation is to use it only as a
stepping stone or for specific scenarios (e.g.
core banking integrations in a bank might
remain central due to risk, but even then,
satellite teams can handle other integrations).

The modernization of ICC-style centralized
approach is to shift to a distributed, yet
centrally controlled, delivery model –
Integration Center For Enablement.

In summary, centralized integration delivery
equates to the old ICC model – great for
control, poor for speed. The C4E’s mission is to
evolve the organization beyond this, retaining
the good (common standards, consolidated
expertise) but alleviating the bad (single-
threaded delivery).

25

6.2 Federated Delivery

with Platform Guardrails

A federated model is a hybrid
approach: integration development
is spread across multiple teams
(often aligned to business units or
product lines),
but a central C4E (or CoE) provides a unified platform and sets guardrails. You can
think of this as a “shared services” model – the C4E offers integration as a shared
service (providing tools, environments, guidelines and maybe some central
resources), and distributed teams actually build and run the integrations in their
areas, in collaboration with the C4E.

Advantages

This model significantly improves the scalability of integration delivery. Multiple
teams can work in parallel on different integration projects, reducing bottlenecks.
At the same time, because they share a platform and standards, the outputs
remain consistent.

It encourages ownership at the team level – those who know the business domain
best (say, the HR IT team for HR system integrations) actually do the work, resulting
in solutions better tailored to business needs.

The central C4E still maintains visibility and control through the platform: they
might monitor all running integrations and ensure that only approved tools are
used, etc., but they are not micromanaging every project.

Structure

Often in this model, the central team is smaller and focuses on governance and
platform ops, while “dotted line” relationships link them to integration developers
embedded in other teams. For instance, each business unit might have one or
more integration specialists (or just developers trained in integration) who are part
of that unit’s IT and the wider C4E community. They adhere to the standards set by
C4E and use the shared integration infrastructure.

6.2 Federated Delivery with Platform Guardrails

26

Guardrails in practice
The C4E might enforce guardrails like code reviews for any integration
before deployment (maybe a central architect signs off or an automated
scan is run), mandatory use of the central Git repository and CI/CD
pipeline, and compliance checks (security, QA) that are built into the
process.

Within these guardrails, however, the business unit teams have autonomy
on how to design and implement their specific solutions.

Challenges
Federated models require good communication and training. There’s a
risk that different teams might diverge in practices if the governance isn’t
strong. The C4E must invest in keeping the distributed teams up-to-date
on best practices and in facilitating knowledge exchange among them
(e.g., regular sync meetings or an internal forum to discuss integration
patterns).

Another challenge is resource allocation, ensuring each business unit has
people with the right integration skills. Sometimes federated models start
with “centers of excellence” in each BU plus an enterprise CoE – that can
be too siloed. The C4E should instead foster a community of practice
where all integration developers, regardless of who they report to, feel part
of one network.

6.2 Federated Delivery with Platform Guardrails

27

When to use
This model is often a transitional stage for organizations on the journey to
full enablement.

It’s very practical for large enterprises – you maintain a strong central
governance via platform and policy but achieve scale by leveraging many
hands in many teams. It’s also effective when different domains have
specialized knowledge; letting them handle their integrations (with
support) results in better outcomes than a distant central team trying to
understand every domain.

The federated model aligns well with the C4E philosophy. It acknowledges
that “not every organization is ready to completely decentralize overnight”
– factors like risk, regulatory environment and internal culture might
necessitate a gradual approach.

Federated delivery provides a controlled way to decentralize. The
playbook for C4E in this scenario is to clearly define the division of
responsibilities (what the central team owns vs. what the distributed teams
own) and to heavily enable those distributed teams (through training, clear
standards, and readily available support).

Over time, as confidence grows, the guardrails can become more
automated and less manual, allowing for even faster delivery.

28

6.3 Self-Service and API-first

Teams – enabled by C4E

In the self-service model, integration
capabilities are so ingrained and the
platform so user-friendly that teams
across the organization can
accomplish integration tasks with
minimal direct involvement from

the C4E.
This represents a high level of maturity. Essentially, the C4E has made itself
“invisible” by embedding integration know-how into tools and processes used daily
by development teams. Every development team is an “integration team” in this
approach. Characteristics of self-service integration include:

API-first development culture

Teams design and expose APIs as part of building any new functionality. It’s a
default behavior, just like writing unit tests. This means when a team creates a new
service or application, they automatically consider how others will integrate with it
(and thus produce APIs or events for consumption).

Accessible integration tools

The integration platform (e.g., iPaaS, API management, message brokers, etc.) is
self-service. Developers can log in, create integrations or APIs, deploy, and monitor
them without needing the central team to intervene. The platform provides out-of-
the-box templates and wizards that even those who are not integration specialists
can build standard integrations (for example, a simple data sync between two
SaaS systems) following best practices.

6.3 Self-Service and API-first Teams – enabled by C4E

29

Automated compliance

As noted earlier, standards enforcement is largely automated. Quality
gates, security scans, and templates ensure that even when teams self-
serve, they are doing the right things by default. If a team tries to deploy
something out-of-policy, the system flags or blocks it automatically.

Minimal central oversight

The C4E central team in this scenario might be very small – a handful of
architects and platform engineers – because they are not managing
projects, only the framework. They intervene only on exception or to roll out
new capabilities. The organization might not even refer to them as a
separate team anymore, as their functions are part of the standard SDLC
and DevOps processes.

Innovation and independence

This model fosters a high degree of innovation. Teams can experiment and
implement integrations rapidly. It’s akin to how cloud self-service enabled
teams to provision infrastructure on their own rather than waiting for IT –
here, teams integrate systems on their own rather than waiting for an
integration specialist.

6.3 Self-Service and API-first Teams – enabled by C4E

30

Pros:

This is the fastest and most scalable model. If done well, it achieves both agility and compliance
(through invisible governance). It enables mass reuse and collaboration, since everything is built on
common standards, and everyone is contributing to the integration ecosystem. It can also lead to
high morale among development teams – they are autonomous and not blocked waiting for
another team.

Cons:

It requires upfront investment in platform, automation and culture. Not every organization will reach
this stage immediately. Without sufficient automation, attempting self-service can backfire – you
might end up with inconsistency if people aren’t following guidelines. Therefore, self-service works
best after a period of federated model where patterns have been established, and tooling is mature.
Additionally, some highly sensitive integrations might still require central oversight (e.g., anything with
very sensitive data or compliance implications might remain gated).

C4E’s role:

In a way, the ultimate success of a C4E is to make integration so natural that the C4E team’s direct
involvement shrinks. But the C4E doesn’t disappear – it transitions to focusing on platform
improvement, new technology R&D and governance monitoring. It also continues evangelizing best
practices. A self-service environment still needs someone to maintain the “self-service portal”. Also, a
C4E would measure things like how many integrations are built by teams independently, the reuse
rates, and if any teams are struggling (then go and help them).

Example of self-service:

Consider a company that has an internal API portal and an automated pipeline for API
deployment. A developer needs to create an integration to onboard a new customer and
connect their systems directly to the company's core services. They log into the portal,
select a "Customer Onboarding" integration template (which enforces company standards
for data mapping and security), fill in the customer-specific details, and utilize pre-built
connectors for the customer's systems. With one click, the integration is deployed. The
system automatically configures data transformations, applies security protocols, registers
the integration in the system catalog, and initiates testing. The result is a streamlined,
secure connection to the new customer's systems, achieved rapidly and efficiently. The
C4E's role is to provide the templates, connectors and governance policies that enable this
self-service approach. This frictionless experience, where "integration" is as simple as
spinning up a server in the cloud, exemplifies the shift from a traditional ICC to a modern
C4E model.

31

6.4 DevOps-Integrated Integration

(CI/CD and Automation)

This is less a separate “model” and
more a crucial practice that overlays
the above models (especially
federated and self-service).
DevOps-integrated integration means that building and deploying integrations is
fully integrated into the same continuous integration/continuous delivery (CI/CD)
pipelines and agile processes that application development follows. Integration
shouldn’t be treated as something outside the normal development flow. In a
modern setup, they’re built and deployed just like any other software using
standard DevOps tools.

In an ICC world, it was common for integration to have a slower, separate release
cycle (because of centralized control). In a C4E world, integration assets (APIs,
integration flows, etc.) go through the same automated build and release process
as any code. Key aspects include:

1 Source control

All integration code or configurations (for example, Frends API specifications, logic
app definitions, Boomi processes, Frends workflows, etc.) are stored in Git or an
equivalent version control system. This enables versioning, peer review via pull
requests, and rollback if needed – just like application code.

2 Continuous integration

Whenever a change is made to an integration artifact, automated builds and
tests run. For an API, this might mean static code analysis (linting the API spec
against standards), running unit tests for any custom code in the integration, and
perhaps spinning up a test instance to run integration tests (like calling the API with
stubbed systems). Integration-specific tests (like mapping validations, contract
tests with a downstream system mock, etc.) are part of the pipeline.

3 Continuous deployment

Whenever a change is made to an integration artifact, automated builds and
tests run. For an API, this might mean static code analysis (linting the API spec
against standards), running unit tests for any custom code in the integration, and
perhaps spinning up a test instance to run integration tests (like calling the API with
stubbed systems). Integration-specific tests (like mapping validations, contract
tests with a downstream system mock, etc.) are part of the pipeline.

4 Automated quality gates

The pipeline enforces the governance discussed earlier. For instance, if a developer
tries to deploy an API that doesn’t meet the naming convention or lacks a required
test, the pipeline can fail the build. Only integrations that meet the quality bar are
allowed to proceed. This ensures that compliance is checked continuously, not just
at go-live.

5 Environment consistency

Using DevOps practices, one can ensure that the integration runtime environments
are configured consistently (using containerization or scripts). This avoids the “it
works on my machine” syndrome for integration flows. If using containers or cloud
functions for microservices, the deployment of those is scripted and standardized.

6 Monitoring and ops in DevOps

Integration DevOps also extends to having integrated monitoring, logging and
alerting. For example, the same APM (Application Performance Monitoring) or
logging solution used for apps is also collecting integration logs. Developers get
alerts if their integration flow fails a deployment or if it throws runtime errors in
production, closing the DevOps feedback loop.

32

6.4 DevOps-Integrated Integration (CI/CD and Automation)

33

Why is this important? Because in a
microservices and multi-platform
landscape, rapid, reliable changes
are needed.
If every integration update requires manual deployment or waits for a specialized
integrator, it slows down the whole software delivery lifecycle. By automating
integration delivery, you align it with the high-frequency release cadence modern
businesses need.

The C4E should collaborate with the DevOps or platform engineering teams to
ensure the integration tools are plugged into the enterprise’s CI/CD framework.
This might involve selecting tools that have good CI/CD support or writing scripts
to bridge gaps. For instance, if using a particular iPaaS that doesn’t natively
integrate with pipelines, the C4E might develop a custom script or use the tool’s
APIs to enable automated deployments.

DevOps integration example:

 A development team working on an e-commerce site makes a change
that requires a new API endpoint in the Order Management integration.
They update the integration code in Git. The CI pipeline triggers: it lints
the API spec (finding no issues thanks to templates), runs tests (all pass),
then automatically deploys the new API to a staging environment where
it’s tested with the front-end. After automated and manual tests, the
team merges to the main branch, and the pipeline promotes the API to
production, updating the API gateway and documentation. All of this
might happen in hours, with full traceability. The C4E’s influence is in the
pre-built pipeline jobs and templates that made it easy for the team to
integrate this into their workflow, rather than a separate process.

In essence, DevOps-integrated integration ensures that the culture of DevOps –
rapid, iterative development with continuous improvement – extends to
integration work. It dovetails with the self-service model: teams can deploy and
manage their integrations just like any microservice. It also supports federated
models, by giving all teams a common pipeline. For leadership, this means
integration is no longer a slow lane; it’s fully part of the high-speed digital delivery
highway.

6.5 Microservices – use with care

34

Microservices have been a buzzword
and a trend for years, promising
greater agility and scalability by
breaking down monolithic systems
into smaller, independently
deployable services.
However, with experience, the industry has learned that microservices come with
their own challenges. A C4E playbook must caution against the misuse or
overzealous adoption of microservices, which can lead to sprawl and operational
burden rather than efficiency.

Each microservice is effectively a standalone project – it has its own codebase,
pipelines, infrastructure, and must be monitored and supported independently.

When an organization ends up with dozens or hundreds of microservices, the
complexity of managing them can grow exponentially.

35

1 Microservice sprawl

Developers might slice applications into too many microservices (sometimes
hundreds), each doing a very granular function. While each microservice might be
simple, the system as a whole becomes incredibly complex. Teams can become
overwhelmed if they need to keep track of what service does what, the network
interactions and interdependencies. As a Cortex.io article noted, “each new
service that’s built brings even more complexity to your architecture”.

2 Operational overhead

Every microservice needs deployment, scaling, monitoring, logging and failure
recovery. The overhead of setting up proper CI/CD, observability and on-call
support for numerous small services is significant. Without strong platform support,
teams may struggle to provide production-grade support for all these services.

3 Inconsistent implementations

If each team builds microservices in their own preferred way (different languages,
frameworks, logging approaches), the heterogeneity adds friction. Lack of
standardization can lead to some services not meeting quality standards or
security requirements. It also lowers the “bus factor” (the number of people who
fully understand a given service) – often only the original developers understand
their microservice, making support difficult

4 Integration burden

Microservices are heavily dependent on integration as they communicate via APIs,
events, etc. The more services there are, the more integration points. It’s somewhat
ironic: microservices were meant to simplify development by isolation, but they
amplify the importance of integration. Without careful design, you can end up with
a messy web of APIs (sometimes called “distributed spaghetti”). The C4E needs to
ensure API interfaces between microservices are well-designed and managed,
and that services are not duplicating each other’s functionality.

Common pitfalls include:

6.5 Microservices – use with care

6.5 Microservices – use with care

36

Given these challenges, the
playbook advice is to use
microservices judiciously:

not every component needs

to be a microservice.
Sometimes a modular monolith or a clustered application can suffice and be
simpler. If microservices are chosen, design them around clear business
capabilities or bounded contexts, not arbitrary technical breakpoints. Ensure each
microservice is meaningful and relatively sizable in terms of function (too fine-
grained is a red flag).

The C4E should issue guidelines for microservice architecture as part of
integration architecture governance. For instance, guidelines can include:

1

Do not create a microservice for trivial code that could live with other
services. Only separate if there is a strong justification: independent scaling
needs, clear ownership boundaries, etc.

2

Each microservice must adhere to the same standards as any product:
proper documentation, logging, monitoring and security. If a team cannot
commit to operating a microservice with these, it shouldn’t be a
microservice.

3

Consolidate where it makes sense: If two microservices are always changed
together or one cannot function without the other, that might indicate they
should be one service.

4

Plan for orchestration: More microservices mean a growing need for
orchestration or choreography (using workflow engines or event buses). The
architecture should include how these services will integrate (synchronous
REST calls, asynchronous events, etc.) and the C4E can provide frameworks
for these (e.g. an enterprise service mesh or messaging standard).

6.5 Microservices – use with care

37

It’s also important to highlight

real-world lessons. Many big tech
companies that pioneered
microservices did so with

significant investment in internal
platforms to handle them

(think Netflix’s engineering tools, or Google’s
Borg / Kubernetes). Enterprises should not
blindly emulate microservice counts without
investing in automation and reliability
engineering. In fact, there have been high-
profile cases (like a well-known Amazon Prime
Video team’s reversion to a monolith for certain
use cases) that illustrate microservices are not a
silver bullet; they introduced too much latency
and complexity, and a consolidated approach
proved simpler in that case.

From the C4E perspective, one
practical approach to mitigate
microservice sprawl is to promote
service standardization and
common DevOps pipelines (as
discussed earlier).

Establishing consistency in how microservices
are built and managed can drastically reduce
the operational burden of supporting them.

For example, having a common microservice
template (with built-in logging, health checks,
error handling) can save each team from
reinventing that plumbing in ten different ways.

A standardized approach allows the broader
team to understand services more easily and
even share the on-call burden, since the
operational aspects are uniform.

To sum up, microservices should be approached
with a balance of enthusiasm and caution. They
align well with agile, decentralized development
– but only if your organization (and C4E)
provides the engineering rigor and platform
support to manage them. The playbook
recommends that architects (possibly via an
Architecture Review Board with C4E
representation) evaluate the granularity of
services early in a project. When in doubt, err on
the side of fewer, more multi-functional services
that can always be split later, rather than an
explosion of tiny services upfront. And whenever
microservices are built, design for integration:
clear API contracts, backward compatibility for
changes, and robust monitoring from the get-
go. This disciplined approach will prevent the
dark side of microservices – runaway complexity
– from undermining the benefits of autonomy
and speed.

6.6 Policy-Enforced Integration via
iPaaS (Microservices through iPaaS)

38

One of the key recommendations

of a modern C4E is to leverage
Integration Platforms as a Service
(iPaaS) to deliver integration
solutions in a controlled yet

flexible manner.
An iPaaS can serve as a powerful enabler for building “microservice-like”
integrations – essentially lightweight, focused integration processes – without
incurring the full overhead of custom microservice development.

It’s an approach to get the best of both worlds: the autonomy and distribution of
microservices, and the governance and ease-of-use of a centralized platform.

39

1 Rapid development with built-in best practices

iPaaS solutions provide low-code or config-driven ways to build integration flows
and APIs. This means developers (or even business analysts in some cases) can
compose integrations via visual designers or templates. The advantage is that the
iPaaS inherently applies many best practices – for example, data mappings, error
handling frameworks and connectors are pre-built and tested. A team using an
modern iPaaS, that offers reusable integration blocks, citizen integrator portals
and templates (prepackaged integration processes) like Frends, can create a
“mini-service” to sync customer data between two systems within hours, and that
service will automatically include logging, retry on failure, and so forth as provided
by the platform.

2 Autonomous agents, centrally managed

Many modern iPaaS (Frends included) allow deployment of agents or runtime
nodes that can run integration processes closer to where the systems are (on-
premises or specific cloud region), giving you distributed execution. Each agent
can function independently to run the workflows assigned to it (even if temporarily
offline from the central control), much like a microservice running in a container.
However, these are all centrally managed – the C4E can push updates, enforce
policies, and monitor all agents from a single control plane. In effect, you get a
fleet of microservices (the flows on various agents) without having to manually
handle each one’s infrastructure and monitoring; the iPaaS takes care of that.

3 Policy enforcement and governance baked in

A good iPaaS will let you define global policies (security rules, naming conventions,
logging formats) and apply them automatically. For instance, if company policy
states that all APIs must check a user’s authentication token, the iPaaS API
gateway component can ensure no API endpoint is deployed without that check
configured. This built-in governance means teams can’t easily “go rogue”. Even if
they’re quickly building something, the platform guards compliance.

How using an iPaaS can help
implement a scalable integration

architecture:

6.6 Policy-Enforced Integration via iPaaS (Microservices through iPaaS)

4 Observability and centralized monitoring

With hundreds of custom microservices, gathering logs and performance metrics
can be a huge effort. But if those “microservices” are built on an iPaaS, the
platform usually provides a unified monitoring dashboard, where you can see all
processes, their success/failure rates, throughput and so on — all in one place.
Alerting can be standardized. Essentially, the operational burden is abstracted
away by the platform – you don’t need separate monitoring setup for each
service. This is a big win for the ops teams.

5 Scalability and performance management

iPaaS platforms handle scaling by allowing more agent instances or leveraging
cloud elasticity. The C4E can set up the platform in a way that if integration
workloads grow, it’s just a matter of configuration change or an automatic scale
event, rather than each team figuring out scaling individually. Also, capacity
planning can be done globally (monitoring overall usage) rather than per
microservice.

6 Consistency across technologies

If multiple programming languages or frameworks were used in custom
microservices, it is difficult to ensure consistency. With iPaaS, the platform provides
a consistent execution environment. Whether a team is integrating SAP or a REST
API or an IoT device, they do it using the same platform primitives. This greatly
reduces the variability in how services are built across the enterprise.

7 Faster onboarding and delivery

New developers can get up to speed faster on a standardized platform. Also,
building an integration in an iPaaS is often quicker than coding from scratch –
there are pre-built connectors for common apps, drag-and-drop mappers for
transforming data, etc. This speaks to the earlier point of accelerating time-to-
market via reusable components. It’s not unrealistic for the C4E to establish an
iPaaS-based “integration factory” where frequently needed integrations (like
syncing customer records to a CRM or onboarding an employee in multiple
systems) are delivered rapidly by configuring templates.

40

6.6 Policy-Enforced Integration via iPaaS (Microservices through iPaaS)

6.6 Policy-Enforced Integration via iPaaS (Microservices through iPaaS)

41

Example use case:

Suppose a company needs to implement a series of microservices for an e-commerce
platform: one service to handle orders, one for inventory updates, one for sending
notifications, etc. Using a traditional microservice approach, you’d write separate
applications, set up separate CI/CD, container deployments, monitoring for each –
significant overhead. If the company uses an iPaaS (say Frends or Boomi or MuleSoft) for
this, the integration developers can create each “service” as an integration process in the
platform: e.g., an Order Process that exposes an API to take orders and orchestrates DB
and CRM calls, an Inventory Process triggered by events, a Notification Process that calls
an email/SMS API. Each of these can be deployed to a runtime agent near the systems
(maybe on Azure cloud for e-commerce stack). They behave like independent services from
a functional perspective, but the platform centrally manages them. Security (like API keys,
OAuth) is configured through the platform’s common interface, logs from all go to the
central log aggregator of the platform, and if any process fails, it can alert the support
team via the platform’s alerting engine.

From the outside, it
looks like a suite of
microservices; from
the inside, it’s all
orchestrated by

the iPaaS.
This approach often reduces the headcount
and skill required to manage the environment –
you don’t need a full DevOps pipeline per
service or deep cloud expertise in each team,
because the platform handles many of these
aspects.

6.6 Policy-Enforced Integration via iPaaS (Microservices through iPaaS)

42

Frends allows
deploying agents on-
prem or in cloud that
execute workflows
autonomously, with
central management.
This aligns well with a scenario where you have
many small integrations distributed across
locations.

You deploy a Frends agent at each site or
network zone, build your microservices in the
Frends UI, and the central C4E team can enforce
global policies and collect logs from all agents.

This means, for instance, if you have 50
microservices across global offices, you’re not
worrying about 50 separate servers and apps –
you might have, say, five agents each handling
ten processes, all observed by the central. If an
agent goes down, central knows. If a policy
needs updating (like a new password rule), you
update in one place.

In summary, using an
iPaaS to implement
microservices and
integrations can
significantly reduce
the unmanaged
sprawl.
It offers a way to implement a distributed
architecture but with a centralized brain, so to
speak.

The C4E should evaluate the iPaaS options
available and choose one (or a few) that meet
their needs (consider factors like cloud vs. on-
prem, supported connectors, cost, etc.). Once in
place, the C4E will act as the product owner of
that integration platform (as discussed earlier in
Platform thinking), continuously improving it and
guiding teams to use it effectively.

The platform, in turn, will enforce much of the
governance automatically and provide the
observability needed for trust. This strategy
enables having many “micro-integrations”
running freely – each solving a specific problem
– without becoming a governance headache.
Essentially, it channels the power of
microservices within a controlled environment.

6.7 Agentic AI–Driven Integration:

Prompting and reusable API tooling

43

What is Agentic AI in

the C4E context :
Agentic AI represents a new class of intelligent automation that not only reasons
over data but acts autonomously by chaining multiple “thought” steps into
executable actions. Unlike traditional RPA or simple API‐first models, an agentic
system can:

1 Listen for events or triggers (e.g., incoming tickets, API calls)

2 Plan a sequence of tasks via a chain-of-thought orchestration

3 Invoke reusable integration assets (APIs, connectors) as “tools”

4 Execute end-to-end flows with minimal human supervision

Triggers & chain-of-thought orchestration

In C4E, we extend our self-service and DevOps-integrated models by embedding
an orchestration “brain” that:

1 Detects an event (e.g., “New invoice arrived,” “Support ticket created”)

2 Invokes a prompt to outline the necessary steps in BPMN 2.0 notation

3 Calls AI reasoning (LLM) to plan and refine each step

4 Dispatches Frends tasks to implement decisions (e.g., data lookups, system updates)

5

This prompt-chaining approach (see Figure 3 on page 9 of the Frends
whitepaper) enables the agent to adapt dynamically to varying inputs
and use cases.

44

6.7 Agentic AI–Driven Integration: Prompting and reusable API tooling

AI Toolboxing & reusable API tools
A cornerstone of C4E is treating integrations as products — versioned,
documented and discoverable via an internal API catalog. In an agentic AI model,
these APIs become tools the agent can prompt-invoke:

1
Toolboxing (Frends 6.x roadmap): define which APIs (and users/
roles) the agent may call in a given context.

2
Computer Use Access (CUA): grant the agent credentials to
interact with third-party UIs or systems when no API exists.

3

By surfacing Reusable APIs in the catalog as callable “tools” we
empower business users to compose high-level prompts
(“Generate monthly sales report, notify stakeholders, and archive
results in SharePoint”) that the agent translates into API calls, data
transformations, and notifications.

Business-User Prompting Experience to make

agentic AI accessible:

1
Pre-built prompt templates for common patterns (ticket triage,
invoice processing, order orchestration)

2
Low-code UI where users select a template, fill in parameters (e.g.,
date range, recipient list), and hit “Execute”

3
Transparent audit trails showing each AI “thought” and API
invocation

4
Governance hooks enforcing SLA, security and compliance checks
at every step

5
This keeps the C4E’s enablement ethos intact — teams own their
processes, with the C4E coaching on best practices and guardrails.

45

6.7 Agentic AI–Driven Integration: Prompting and reusable API tooling

Getting Started: Low-Hanging Fruit
Begin with high-volume, well-bounded processes that today still require manual
review or rule-heavy logic, such as:�

� Invoice exception handling (AI summarizes and recommends approval)�
� Support-ticket categorization (AI classifies and routes automatically)�
� Data-entry tasks (AI reads unstructured inputs, invokes APIs)

Steps to pilot:

1 Identify manual review steps in your automation backlog

2 Wrap an AI “thought” step around the decision point

3
Register underlying integration APIs as agent “tools” in the

C4E catalog

4 Publish a prompt template and train business users

5
Measure time savings, error reduction and agent-invocation

metrics

6

Over time, the Agentic AI model becomes another Delivery

Operating Model within C4E, complementing self-service,

DevOps and policy-enforced paradigms, while unlocking

true autonomous digital workforces.

2

07
Consistency
across multiple

integration
platforms

It would be ideal if an enterprise could
standardize on a single integration platform
and stick to it. However, the reality in large
organizations is often more complex –
multiple integration tools and platforms end
up being used.

This can happen due to historical reasons
(legacy systems with their own integration
brokers, previous strategic choices),
acquisitions (bringing in a different tech
stack), or simply choosing the right tool for
different types of tasks (for example, using
one iPaaS for real-time APIs and another for
big data batch transfers).

46

7. Consistency across multiple integration platforms

47

Acknowledging the reality of
multiple iPaaS platforms is
important. The C4E’s challenge is

to maintain consistency and avoid
duplication across these diverse
tools.

Some scenarios leading to multiple
platforms:

A company might have Informatica or IBM
DataPower as older on-prem integration
middleware, while newer projects use MuleSoft
or Frends. Both continue to exist for a time.

Different departments might have
independently adopted platforms: IT chose one
standard, but a marketing SaaS team might use
a simpler Zapier/Workato for certain
automations, or a dev team might use Azure
Logic Apps because they are heavily in Azure.

Specialized use-cases: Perhaps a high-volume
data integration uses a distinct ETL tool,
whereas event streaming is done via Kafka, and
classic app integration via an iPaaS – all of
these could be in play simultaneously.

Running multiple integration
platforms can fill specific gaps or
optimize certain use cases, but it
undeniably adds complexity in
governance. To ensure this doesn’t
devolve into chaos, consider the
following C4E strategies.

1. Integration architecture
governance

Establish an Integration Architecture Board
under the C4E that reviews architecture for new
integration projects. One of its tasks is to decide
which platform should be used for a given
integration requirement. For example, “If you
need real-time request-response with our core
systems, use Frends; if you need scheduled file
transfers or simple SaaS-to-SaaS data sync, use
Frends.” By delineating use-cases, you prevent
teams from using whatever they fancy and then
duplicating efforts. This also helps teams know
where to go. They won’t try to build a real-time
API on a tool meant for batch, etc.

2. Unified standards

across platforms

The governance standards (security, design,
logging, etc.) should be tool-agnostic at their
core. The C4E should express them in a way that
each platform’s implementation can adhere. For
instance, “All APIs must have authentication via
OAuth/OIDC” – in Platform A that might be a
policy, in Platform B maybe you manually
configure it, but either way the outcome is the
same. Or a naming convention: if the convention
is that every integration flow ID starts with the
department code, ensure that’s followed in each
platform. The C4E can create platform-specific
checklists derived from the master standards to
help local admins comply.

48

7. Consistency across multiple integration platforms

3. Cross-platform monitoring

and cataloguing

Aim to create a central catalogue of
integrations and APIs regardless of platform.
This could be as simple as a spreadsheet or
Confluence page at first, but ideally, a tool
(some API management systems can catalogue
APIs from multiple gateways). The idea is anyone
can search one place to find out “do we have
integration X connecting system Y to Z?” and
get an answer, even if one is implemented on
Azure Logic Apps and another on Frends, for
example. This prevents duplication because
teams can discover existing assets. Additionally,
consider central monitoring if feasible: some
enterprises route logs from all integration tools
into a single SIEM or logging service (like Splunk
or Elastic), tagged by source. This way,
operationally, you have one pane of glass to see
errors across all platforms.

4. Avoid duplicative integrations

A major risk with multiple platforms is two teams
unknowingly build the same integration on two
different platforms. To counter this, the C4E
should require that any new integration project
be registered with them (not for heavy approval,
but for visibility). During design, the C4E (or the
integration architecture board) can point out
“hey, we already have an API for customer data
on Platform X, you don’t need to create a new
one on Platform Y – just reuse or extend the
existing one.” Cultivating this awareness saves
time and prevents maintaining two things that
do the job of one. It ties back to the catalogue
– if well maintained, duplication can be caught
early.

5. Rationalize platforms over time

While multiple platforms may be reality now, the
C4E should continually assess if all are needed. If
two platforms provide similar capabilities,
maybe plan to retire one after migrating
integrations. Standardizing reduces cognitive
load and costs. For instance, if you have both
Dell Boomi and Azure Logic Apps doing similar
light-weight integrations, and you determine
Azure covers all needs, you might phase out
Boomi. This is a longer-term strategy; it might
not be immediate due to contractual or skill
reasons, but having a roadmap helps.
Communicate this to teams so they know where
to invest their learning focus.

49

7. Consistency across multiple integration platforms

6. Leverage integrations

between platforms

Sometimes, you can integrate the platforms
themselves to avoid silos. For example, if you
have an API management tool on one
platform, you might still expose integrations
from another platform through that same API
portal (e.g., publish an Azure function API in
Frends´s catalogue). Or use a message bus like
Kafka to tie things – one platform drops
messages on a topic, another picks them up.
The C4E can design these cross-platform glue
mechanisms to ensure the multiple tools act
as parts of a larger cohesive integration
architecture, rather than isolated islands.

7. Consistent team

skills and processes

Host common trainings and ensure that
integration developers on different platforms
still feel part of one community. The C4E’s
efficiency is in the prebuilt pipeline jobs and
templates that cover enterprise-wide best
practices, not just tool specific how to’s. It
would be good idea to rotate staff or have
them cross-review each other’s work. A
developer primarily on Platform A could
benefit from understanding Platform B’s style –
it reduces key-person risk and increases the
unity. Additionally, keep processes like
deployment and change management similar.
Even if Platform A and B have different tech,
maybe both use similar branching strategies,
both create design documents that go into a
common repository, etc.

Running multiple iPaaS does require more diligence for monitoring and management. It’s like
managing a multi-cloud environment – complexity grows. But with the right governance and a C4E
overseeing it, it’s manageable. The goal is to mitigate the downsides: avoid silos (where each
platform has completely separate ways of working), avoid duplication (doing same integration
twice), and avoid inconsistency (different security levels or data definitions in different platforms).

Illustrative example:

A global enterprise might use Frends in its core IT, but one regional team heavily uses AWS
and prefers native AWS services like API Gateway and Step Functions for integrations. The
C4E can allow this duality but sets rules: e.g., “All customer-facing APIs, regardless of
platform, must appear in the global API developer portal with proper documentation and
use the global OAuth security” – so whether an API is actually on Frends or AWS, the
consumer sees a unified front. Meanwhile, internal governance might say: “if integrating
deeply with AWS data lakes, use the AWS-native pipeline; if integrating on-prem apps or
third-party SaaS, use Frends.” This specialization cuts down overlap. And the C4E monitors
both environments for compliance and provides support. Over time, if AWS pipelines prove
very effective, they might shift more to that, or vice versa – the C4E will make that strategic
call.

In conclusion, multiple integration platforms are a reality that need not sink an integration strategy –
provided the C4E maintains a strong overarching governance.

By enforcing common standards, sharing knowledge, and eliminating redundant effort, the C4E
ensures that having two or three integration tools doesn’t mean having two or three divergent
integration practices. There remains one integration culture and one set of goals across the
enterprise, with the C4E as the unifying force.

2

08
Conclusion:

Building a

modern
integration
capability

Transforming a traditional ICC into a modern
Integration C4E is not just a technology shift,
but a cultural and organizational one. It
aligns integration practices with today’s
needs for speed, scalability and flexibility,
while still safeguarding the enterprise’s need
for security and reliability.

By implementing the approaches in this
playbook, enterprises can expect to see
shorter delivery cycles, higher reuse of
assets, better adherence to standards and
improved quality in their integration
landscape. When teams can move faster and
avoid unnecessary back-and-forth, the
whole business benefits with fewer delays,
fewer surprises and more value delivered.

50

51

8. Conclusion: Building a modern integration capability

A few key takeaways from this playbook for business and

IT leaders:

Empower teams, but equip them

Enable your distributed product and IT teams to do integration work
themselves by giving them the right platform, training and support. When
teams have self-service tools and clear guidelines, they can deliver
integrations much faster than a central queue ever could. However, don’t
just turn them loose – invest in the C4E function to provide the necessary
guardrails and help.

Treat integration as a

product and a capability

Just as you’d invest in improving a customer-facing product, invest in your
integration platforms and APIs. Manage their lifecycle, measure their usage,
and market their availability internally. This drives reuse (why build something
twice?) and increases the ROI of every integration developed. Over time, you
build a library of integration assets that make future projects easier – a
competitive advantage in responding to change.

Diverse operating

models can coexist

It’s not one-size-fits-all. You might still run a small central integration team
for the most critical systems (for risk management), while federating most
work, and pushing self-service for standard SaaS integrations. That’s fine.
The C4E can support multiple modes simultaneously, acting as a flexible
framework. The ultimate direction is toward more federation and self-service
as maturity grows, but you can pace it according to your organization’s
readiness.

Governance is an

enabler, not a roadblock

Modern integration governance is lightweight, automated, and principles-
based. It’s about setting teams up for success – “secure by design,
compliant by default” – rather than catching mistakes at the end. When
done right, governance actually speeds delivery (no last-minute security
rebuilds) and ensures reliability. So, prioritize establishing those standards
and automations early; it will pay dividends as you scale out enablement.

52

8. Conclusion: Building a modern integration capability

Mind the microservices

(and the tools)

Embrace microservices and cloud integrations where they make sense, but
do so knowingly. The C4E should guide architecture so you don’t end up with
more services than you can handle. Similarly, rationalize your toolset: use
powerful iPaaS platforms to ease the operational pain of many integrations
and converge on consistent ways of working even if multiple platforms exist.
The focus should be on reducing complexity for teams, not adding to it.

For organizations that get this right, the reward is an integration capability that
truly accelerates digital transformation. New customer experiences can be
launched faster because back-end integrations are readily available. Mergers and
acquisitions are integrated more smoothly. Internal innovation increases as teams
can connect systems and data on their own to test ideas (within safe guardrails).
Essentially, the enterprise becomes more nimble and connected, turning
integration – often seen historically as a slow, backend concern – into a strategic
asset.

Adopting the C4E model requires leadership support. It may involve reshaping
team structures, investing in new platforms and re-training staff. It’s important to
communicate the vision: a shift from a “control tower” to a “force multiplier”
approach. Early wins can be demonstrated by pilot projects where a federated
team delivers an API in weeks rather than months, or where reuse of a component
saved significant effort. Celebrate those and build momentum.

The Integration C4E playbook provided here is a guide; each organization should
tailor it. But the core principle holds universally: integration should be enabled as a
distributed capability, not bottled up. By focusing on enablement, product
thinking, multiple operating models, strong governance, prudent microservice use,
iPaaS leverage and cross-platform consistency, any large enterprise can
modernize their integration competency into something far more agile and
impactful than the ICCs of old.

In closing, the journey from ICC to C4E is about empowering people as much as it
is about technology. When your developers and analysts are enabled to connect
systems and create APIs quickly (and correctly), they innovate. When they are
supported by a central team that provides a great platform and clear standards,
they excel. Speed and safety, innovation and governance, can indeed coexist –
and the Integration C4E is the organizational construct to achieve it. With this
playbook, you can begin that transformation and position your enterprise
integration capability for the demands of the digital age.

Thank you
for more, visit frends.com

Frends iPaaS

Where data flows, business
grows.

